Discovering Non-linear Ranking Functions by Solving Semi-algebraic Systems
نویسندگان
چکیده
Differing from [6] this paper reduces non-linear ranking function discovering for polynomial programs to semi-algebraic system solving, and demonstrates how to apply the symbolic computation tools, DISCOVERER and QEPCAD, to some interesting examples. keywords: Program Verification, Loop Termination, Ranking Function, Polynomial Programs, Semi-Algebraic Systems, Computer Algebra, DISCOVERER, QEPCAD
منابع مشابه
Program Verification by Reduction to Semi-algebraic Systems Solving
The discovery of invariants and ranking functions plays a central role in program verification. In our previous work, we investigated invariant generation and non-linear ranking function discovering of polynomial programs by reduction to semi-algebraic systems solving. In this paper we will first summarize our results on the two topics and then show how to generalize the approach to discovering...
متن کاملUsing shifted Legendre scaling functions for solving fractional biochemical reaction problem
In this paper, biochemical reaction problem is given in the form of a system of non-linear differential equations involving Caputo fractional derivative. The aim is to suggest an instrumental scheme to approximate the solution of this problem. To achieve this goal, the fractional derivation terms are expanded as the elements of shifted Legendre scaling functions. Then, applying operational matr...
متن کاملAlgebraic Solving of Complex Interval Linear Systems by Limiting Factors
In this work, we propose a simple method for obtaining the algebraic solution of a complex interval linear system where coefficient matrix is a complex matrix and the right-hand-side vector is a complex interval vector. We first use a complex interval version of the Doolittle decomposition method and then we restrict the Doolittle's solution, by complex limiting factors, to achieve a complex in...
متن کاملAutomated Deduction in Real Geometry
Including three aspects, problem solving, theorem proving and theorem discovering, automated deduction in real geometry essentially depends upon the semi-algebraic system solving. A “semi-algebraic system” is a system consisting of polynomial equations, polynomial inequations and polynomial inequalities, where all the polynomials are of integer coefficients. We give three practical algorithms f...
متن کاملSolving Non-linear Fredholm Integro-differential Equations
In this paper, Semi-orthogonal (SO) B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of linear and non-linear second order Fredholm integro-differential equations. The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this functions are presented to reduce the solution of linear and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007